Time and frequency split Zak transform for finite Gabor expansion

نویسندگان

  • Soo-Chang Pei
  • Min-Hung Yeh
چکیده

The relationship between finite discrete Zak transform and finite Gabor expansion are well discussed in this paper. In this paper, we present two DFT-based algorithms for computing Gabor coefficients. One is based upon the time-split Zak transform, the other is based upon the frequency-split Zak transform. These two methods are time and frequency dual pairs. With the help of Zak transform, the closed-form solutions for analysis basis can also be derived while the oversampling ratio is an integer. Moreover, we extend the relationship between finite discrete Zak transform and Gabor expansion to the 2-D case and compute 2-D Gabor expansion coefficients through 2-D discrete Zak transform and 4-D DFT. Four methods can be applied in the 2-D case. They are time-time-split, time-frequency-split, frequency-time-split and frequency-frequency-split. Zusammenfassung In diesem Beitrag werden die Beziehungen zwischen der endlichen diskreten Zaktransformation und der endlichen Gaborentwicklung griindlich diskutiert. Wir priisentieren zwei Algorithmen auf DFT-Basis zur Berechnung von Gaborkoeffizienten. Einer beruht auf der zeitlich, der andere auf der frequenzmaig zerlegten Zaktransformation. Diese Methoden sind dual beziiglich Zeitund Frequenzbereich. Mit Hilfe der Zaktransformation kann man such eine geschlossene Losung fir die Analysebasis ableiten, wenn um einen ganzzahligen Faktor iiberabgetastet wird. Dariiberhinaus erweitem wir die Beziehung zwischen der endlichen diskreten Zaktransformation und der Gaborentwickhmg auf den 2D-Fall und berechnen 2D-Gaborentwicklungs-Koeffizienten mittels einer 2D-Zaktransformation und einer 4D-DFT. Vier Methoden sind im 2DFall anwendbar. Sie beruhen auf Zeit-Zeit-, Zeit-Frequenz-, Frequenz-Zeitund Frequenz-Frequenz-Zerlegungen. La relation existant entre la transformation de Zak discrete finie et l’expansion de Gabor finie est disc&e en profondeur dans cet article. Nous presentons deux algorithmes bases sur la DFT pour le calcul des coefficients de Gabor. L’un est base sur la transformation de Zak par partage de temps, l’autre sur la transformation de Zak par partage de frequence. Ces deux methodes constituent une paire duale temps-frequence. A l’aide de la transformation de Zak, les solutions analytiques pour la base d’analyse peuvent igalement etre d&iv&es si le rapport de sur-Cchantillonnage est un entier. De * Corresponding author. E-mail: [email protected]. 01651684/96/%15.00 @ 1996 Elsevier Science B.V. All rights reserved PZZSO165-1684(96)00068-O 324 S.-C. Pei, M.-H. YehjSignal Processing 52 (1996) 323-341 plus, nous ttendons la relation entre la transformation de Zak discrete finie et l’expansion de Gabor au cas bi-dimensiomtel et calculons les coefficients de l’expansion de Gabor 2-D via la transformation de Zak discrete 2-D et la DFT 4-D. Quatre methodes peuvent &tre appliquees darts le cas 2-D. Ce sont les methodes partage temps-temps, partage temps-frequence, partage Mquence-temps et partage frequence-fiequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time and Frequency Split Zak Transform for Finite Gabor Expansion - Circuits and Systems, 1995. ISCAS '95., 1995 IEEE International Symposium on

The relationship between finite discrete Zak transform and finite Gabor expansion are well discussed in this paper. In this paper, we present two DFT-based algorithms for computing Gabor coefficients. One is based upon the time-split Zak transform, the other is frequencysplit Zak transform. These two methods are time and frequency dual pairs. Furthermore, we extend the relationship between fini...

متن کامل

Zak transforms and Gabor frames of totally positive functions and exponential B-splines

We study totally positive (TP) functions of finite type and exponential Bsplines as window functions for Gabor frames. We establish the connection of the Zak transform of these two classes of functions and prove that the Zak transforms have only one zero in their fundamental domain of quasi-periodicity. Our proof is based on the variation-diminishing property of shifts of exponential B-splines....

متن کامل

On the Non-Orthogonal Sampling Scheme for Gabor’s Signal Expansion

Gabor’s signal expansion and the Gabor transform are formulated on a non-orthogonal time-frequency lattice instead of on the traditional rectangular lattice. The reason for doing so is that a non-orthogonal sampling geometry might be better adapted to the form of the window functions (in the time-frequency domain) than an orthogonal one: the set of shifted and modulated versions of the usual Ga...

متن کامل

Gabor’s Signal Expansion and the Gabor Transform for a General, Non-Separable Sampling Geometry

Gabor’s signal expansion and the Gabor transform are formulated on a general, nonseparable time-frequency lattice instead of on the traditional rectangular lattice. The representation of the general lattice is based on the rectangular lattice via a shear operation, which corresponds to a description of the general lattice by means of a lattice generator matrix that has the Hermite normal form. ...

متن کامل

Equivalence of Dft Filter Banks

Recently connections between the wavelet transform and lter banks have been established. We show that similar relations exist between the Gabor expansion and DFT lter banks. We introduce the \z-Zak transform" by suitably extending the discrete-time Zak transform and show its equivalence to the polyphase representation. A systematic discussion of parallels between DFT lter banks and Weyl-Heisenb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 52  شماره 

صفحات  -

تاریخ انتشار 1996